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The asymptotic form as I --f 0 of the solution of the axisymmetric dynamic problem of thermoelasticity 

for a half-space heated by heat sources is obtained. The error of the asymptotic representation of the 

solutiou is estimated. 

Under certain conditions, when a concentrated energy flux (a laser beam, an electron beam, 
etc.) acts on a solid, temperature stresses may occur in the solid, leading to its brittle fracture 
[l-5]. In many cases thermoelastic stresses occur due to the fact that the energy absorbed in the 
material gives rise to internal heat sources. Determining the stresses in the irradiated solid is 
the main stage in investigating the process by which fracture occurs. When using structural 
representations it is assumed that the fracture is due to defects (cracks), the development of 
which is determined by macroscopic stresses in the microdefect material. 

The fracture of materials with weak absorption by concentrated energy fluxes is not 
determined solely by thermoelastic stresses, but occurs on the background of these for short 
action times [6]. Materials with intense absorption also fracture, as a rule, after a short time [l]. 
Hence, it is of interest to obtain a simple approximate solution of the problem of thermo- 
elasticity for short heating times while monitoring the error of this solution. 

The simplest and most natural model of an irradiated body is an elastic half-space. If the 
characteristic fracture time @-L/c, where L is the characteristic dimension of the region 
included in the fracture, and c is the velocity of propagation of elastic perturbations, then, to 
determine the stresses in this region one can use the quasistatic solutions for a half-space [l, 4, 
7-91. If td L/c, the quasistatic solution is obviously insufficient and we must consider the 
solution of the dynamic problem. 

The intensity of the concentrated energy flux in many cases falls off exponentially with depth 
(Bouguer’s law [3]). Hence, the case of an exponential falloff with depth of the density of 
internal heat sources is of the greatest interest. The corresponding one-dimensional dynamic 
problems of thermoelasticity were considered in [lO-131. 

In fact, however, the intensity over the cross-section of the flow usually has a certain dome - 
shaped distribution. This can be approximated quite naturally by some function which falls off 
fairly rapidly at infinity, and which also takes into account the more complex cases of the 
intensity distribution characterized by the presence of several “domes” [14]. The characteristic 
dimension of the heating spot in fact determines the transverse dimensions of the fractured 
region. Hence, as far as applications are concerned, it is of the greatest interest to determine 
the dynamic axisymmetric state of stress in the body for short heating times. 

tPrikl. Mat. Mekk. Vol. 58, No. 2. pp. 147-158, 1994. 



344 L. N. Germanovich et al. 

In [15] the axisymmetric dynamic problem for a half-space was considered with a boundary 
condition of the second kind and finite velocity of propagation of the heat. A relatively simple 
asymptotic form was obtained in the case of a point source as t -+ OQ for the displacements in a 
Rayleigh wave and as p-i’= (where p is the distance from the point of application of the 
thermal action) for the jumps in displacements on the elastic wave fronts. It is difficult to 
investigate the stress state in the neighbourhood of the point where the thermal action is 
applied using the results obtained in that paper. 

The dynamic temperature stresses in an irradiated body are investigated below using a 
model of an elastic half-space in which axisymmetric distributed heat sources, which fall off 
with depth exponentially, act on the body. The asymptotic form as t + 0 is separated from the 
exact solution. This paper is a continuation of the investigations carried out in [8, 91, where 
similar problems of thermoelasticity were considered in a quasi-static formulation, and also of 
the investigation carried out in [16], where a similar dynamic elastic non-temperature problem 
was considered. 

1. In cylindrical coordinates r, ‘p, z we will consider an elastic half-space z B 0, which, up to 
the instant of time t = 0, is at rest at a temperature T =O. From the instant of time t = 0 
distributed heat sources act in the half-space. The density of the heat sources is 

where the function f(r) admits of a Hankel transformation. On the boundary of the half-space 
z = 0 heat exchange occurs in accordance with Newton’s law with a mean zero temperature. 
It is required to obtain the stresses in the half-space taking the dynamic components into 
account. 

We will change to dimensionless quantities, assuming 

,D=W f-Cl 

40a2 ’ 
r’=--, z’=--, =_ ZCl 6’ &, 

a a a 

2 2 

te!-, &.E, &%f , yt=l 
a Cl 1 Cl 

(1.2) 

where k is the thermal conductivity, a is the thermal diffusivity, h is the relative heat-exchange 
coefficient, a is the coefficient of linear expansion, 6 is the characteristic dimension of the 
distribution f(r), and c, is the velocity of longitudinal elastic waves. The primes on the 
dimensionless quantities will henceforth be omitted. 

For the boundary-value problem of heat conduction 

aT 
-=AT+f(r)e-“, 711tzo =O, 
at 

IT(r,z,t)l< 00, 

(1.3) 

and the transform of the temperature has the form [9] 

T’(r,z,s)=~hfH(h)Jo(hr)F(iLz,s)& F(h,z,s)= 
eTQ ( y + h)e-OL 

0 s(w2 - y*) - s(o* - y*)(o + h) 
(1.4) 

T” = Ls(T} = TT(r,z,t)e-“dt, fH@) = H~If(r)l= 7lf(r)-kDWr 
0 0 

o=&+h2, argw=O when s>O 
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where J,, is a Bessel function of the first kind. 
To determine the thermoelastic potentials of the displacements it is necessary to solve 

boundary-value problems for the wave equations 

*@-$=moT, (A-+2$0 
r 

aa 
@I,=0 = -& _ = %, =$ _ -I =o, IaN<=, IYI<-J 

t-o r-0 

(1.5) 

m, 
_ l-v,, e2 A 

l+v - 2 
c2 

where v is Poisson’s ratio and c2 is the velocity of transverse elastic waves. 
The solutions of (1.5) can be found by means of a Laplace transformation with respect to t 

and Hankel transformations of the zeroth and first order with respect to r. We then obtain for 
the transforms of the potentials 

@*(T&S) = ~lC(I,s)Jo(hr)e-%& 
0 

-mojlrfHWoCW l [ 
e+ (y+h)emw A 

0 s(w2-y2) R:-y2- (Rf -02)(ro+h) I (1.6) 

R&m, R,=A/~, argR,=argR2=0 when s>O 

By determining the transforms of the stresses corresponding to a* and Y* we can then 
obtain the unknown functions C(h, s) and D(h, S) from the boundary conditions 

dzll,o = el,,o =o 
We finally obtain for the transforms of the required stresses 

u,(hr)=J,(3LT)l(hr)-Jo(~r), u,(3v)=-Jt(hr)/(b) 

R2 =E~s~/~+~~ el=e 
-Rlz 

. , e,=e 
-R2r -Rv , e12 =el-e2. e,,=e _ ,-P 

-Rlr _ e-~ 
3 51= 

1 
eRo, =e 52 = 

y+h 
s(02 - y2)(R; - y2)’ s(02 -y’)(R; -co~)(w+~) 

(1.7) 
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where G is the shear modulus. 
The originals corresponding to expressions (1.8) can be formally written using the inversion 

theorem. It is difficult to use the solution obtained in this way for practical calculations. 

2. When obtaining the asymptotic form as t -+ 0 of the exact solution we will confine 
ourselves to the functions f(r) which satisfy the following condition. We will assume a function 
fH(h) that falls of exponentially as h increases. This, in particular, ensures that the following 
integrals converge 

A,,,,,(r) = ~~mfn(~)Jn(kr)dh, m=l2 - n=O,l , .***.. (2.1) 
0 

Note that the often used distributions 

f(r)=(t/6)2”exp[-r2/(462)], f(r)=62n+1(r2+82)-(2n+‘)‘2, n=O,l,... 

satisfy this condition. The asymptotic expansion of CJ,, has the form 

(2.2) 

We will illustrate the method of obtaining expansion (2.2) by using an example of separate terms. 

Consider the term 

4 (LZJ) = 
&-&+tc 

s(02 -y')(Rf -y2) 

After obvious reduction we have the expression 

2 

q(h,z,s)= 
2(s-y2)(sZ-y2) [ -&]x 

x[l+$j[*+,,[l+e~.~ 

from which it follows that the series 

4 @,z,s) = il pL:, (z,s>h2” (2.4) 
n=O 

converges for any fixed value of h and I s I> M. The functions p*, (z, S) are proper rational fractions in s 
and are represented in the neighbourhood of s = - in the form of Laurent series. By the first expansion 

theorem [17] we have 

~.(z,r)=L;‘(lln(z.s)~=~l{~+...}=~r~+~+... 
p,+1 (z.0 = o(p,(z.r)). r -9 0. n =O,l,... 

(2.5) 
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where L;’ is the inverse operator to L,. Substituting (2.4) into (2.3) and integrating term by term 

respect to h, we obtain the formal expansion 

with 

oz.2 
*(I),” 

= ~&%,+t,o(~)lr:(z.s) 

Changing to the originals we obtain, using the retardation theorem 

o(:)(r,z,r)= “~~Az.+t,~(r)p,(z.t-z), t+O: t>z 

It can be proved that (2.6) is, in fact, the asymptotic expansion of c$) as I + 0. 

(2.6) 

The first condition of the asymptotic expansion is satisfied by virtue of (2.5). We will estimate the order 

of smallness of r”(r, z, t) as r -+ 0, which is equal to the difference between the left-hand side and the first 

n+l terms on the right-hand side of relation (2.6). As a consequence of relations (2.1) and (2.3) we will 

have 

r,(r.z,l+z)=ThfH(h)~~(7v)L;‘(q:(~,z,s))dh 
0 

q’(h z s)=4(A z s)- ; n . 9 , 9 p;(z s)Pk 9 
k=O 

where the possibility of changing to the original under the integral sign is ensured by the uniform 

convergence of the corresponding integrals established on the assumption of an exponential decrease in 

f “(V. 
From relations (2.4) and (2.5) we have, when I s I> M the expansion 

using which we obtain 

r,(r,z,t)=o(CI,(z,1-z)). t+O, t>z (2.7) 

which indicates that the second condition of the asymptotic expansion is satisfied. 

The asymptotic expansions of the originals of the terms containing the factors e-&‘, e-“‘, e-” are 
obtained in the same way as for og), since the roots of the equation P(h, s)=O are only s= 0 and 
s = fiM/e, O< fi< 1 [18]. For the transforms having the factor (~+h)-’ in relations similar to (2..5), 

instead of the first expansion theorem its generalization for fractional powers of s is employed [19]. 

To obtain the asymptotic expansion of the original of the term having the factor emgr we will use a 
method which is essentially a generalization of the method from [20]. 

The original has the form 

0:) =(y+h)[(e* /2)5(r,z,t)+S(r,z,t)l (2.8) 

C(z,s) = e -Z-h (S-y*)-‘(&+h)-’ 

For P,(r, z, t), using the convolution and displacement theorems and then expanding eePr using 
Taylor’s formula, changing the order of integration with respect to h and z and integrating with respect to 
h term by term, we will have 

4 (r,z,r) = ~~H(h)lo(hr)dh;e'-7e-P74_1 (<(z,s))& = 
0 0 
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= i A2k+l,0(r)ptlz,t)+gn(r.z,t) 
k=O 

0 

(2.9) 

The last expression for p&, t) is obtained by k-fold integration by parts using the displacement 
theorem. 

Applying the generalized theorem on the mean [21] (L;‘(Qz, s)} 3 0 [u)]) to the integral representation 
of pc+r(z, t) we obtain 

2L Pk+l(z,t)=-k+l Pk(z.t), o<f+2 <1 

Pk+l(Z,f)=O(Pk(Z.t)), t+O 

Ig,(r,z,t)l~lp,+~(z,t)l~h2”+21fH~l)ld)c 

0 

g,(r,T,t)=o(p,(z.t)). t+O 

It follows from (2.10) and (2.9) that 

(2.10) 

(2.11) 

The asymptotic expansion for l$(r, z, t) is obtained by replacing &r+,,o(r) by bk+3,0(r) in (2.11) and by 
double integration in the section [0, t]. 

Adding all the asymptotic expansions of the terms which form cr,, and combining terms with the same 
factors A,,+,.,(r) we obtain relation (2.2). 

Similar expansions can also be obtained for the residual stresses. 
Since c, - lo3 m/s and a - 10” m2/s, it follows from the fifth relation of (1.2) that large values 

of the dimensionless time t’ may correspond to physically small times t. Hence, the use of the 
asymptotic form as t’ + 0 to obtain an approximate solution requires some justification. In this 
connection we will consider some features of the asymptotic expansion of (2.2). We will revert 
for a moment denoting dimensionless quantities by primed letters. Since the function f(r) is 
dimensionless, f(r) = fi(r/g) = f,(r’/g?. 

From (2.1) and the properties of the Hankel transformation successively we obtain 

fH(X) = 8’2f,H(W), A,(r) = $-~Ajff (2.12) 

where AE(r’l6’) has the same values in dimensional and dimensionless quantities. 
The transformations cp,* (z’, s) = L,(q,,(z’, r’)) are the coefficients of the expansion in a power 

series in h2 of the function 

rp’(h2,z’,s) = R2[Q(X,z’,S)+h253q21 

It can be shown that the function 9*(X2, z, s) and all its derivatives with respect to X2 have 
only removable singular points in the half-plane Res > 0. 

The behaviour of cp,(z’, t’) as t’ + 00 is determined by the expansion of cp,*(z’, s) in the 



The dynamic problem of thermoelasticity for a half-space with distributed heat sources 349 

neighbourhood of the singular point s = 0. Hence, using Theorem 35.1 of [19], it can be proved 
that the following relations hold 

(P” (z’, t’) = t’2nyn (z’, t’) (2.13) 

where w.(z’, t’) are bounded as t’ + 00. Consequently, from (2.2), (2.12) and (2.13) we obtain 
the expansion 

(2.14) 

Since t’6’= t, = c,t /6, while the coefficients of $” in the expansion (2.14) are bounded as 
t’ + 00, we would expect the asymptotic form obtained from (2.14) by retaining a finite number 
of terms to be fairly accurate when c,t/6Gl. Finally, the quality of the asymptotic form 
obtained can be established by estimating the error. 

We will confine ourselves to asymptotic representations of the exact solution. Once again 
omitting the primes when denoting dimensionless quantities, we will have 

T(r z t)= T(O)+6 e-p 
, 9 T = f(r)iq I (y+h)eTZF +6 

s(s-y2) - S(S-y2)(&+h) I T 

oj -2.3 2-h 
- = _kjT@) + ljf(‘)&’ I de -e-“) (Y+h)(e+-e- 
2moG 

) +6jj 

(s-y2)(s2 -y2) -(S-y2)(S-l)(Js+h) I 

0 e -23 

2m = 4, <W;’ 
- e-- (Y+h)(eLL" -emU") 

0 e-Y2x~+Y) - &(S-y2)(~+1)(&+h) + 
(2.15) 

+ y(eeLS -es”) (y+h)(e-" -e-'&) 

s(s-y2)(s2 -y2) -S&(S-y2)(S-l)(&+h) I 

+6 

rz 

i=r,%z. k, =kq =I, k, =o, 1, =4 =v/(l-2v), lz =E2/2 

Relations (2.15) are exact expressions for the stresses. We can obtain an approximate 
solution by dropping the errors 6,, (i, j=r, cp, z), 6, in (2.15). Note that the temperature and 
the normal stresses in the approxtmate solution are the solution of the corresponding one- 
dimensional problem multiplied by f(r). 

3. We will estimate 6,. Using the theorem of the integration of an original and the displace- 
ment we obtain from (1.4) and (2.15) 

W= 7VH@)J0(hr)Aj (ee3’ - 1)~'(sF(O,z,s)}dz 
0 0 

(3.1) 

Since L;‘(sF(O, z, s)) >O like the derivative with respect to t of the solution of the one- 
dimensional boundary-value problem of heat conduction, which is obtained from (1.3) when 
f(r) = 1, A = a2 /3z2 and 

and like the convolution of positive originals [20], we have 
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From (3.1) and (3.2) using the inequalities IJ,(x) IC 1, l-eWP’ s h2t we obtain 

As was pointed out in Section 2, large values of the dimensionless time t may correspond to 
physically small times, In order to obtain satisfactory estimates of the errors 6,, (i, I= r, cp, z) 
for fairly large intervals t, it was necessary to take some care when deriving power estimates of 
the form At’. It is desirabfe to obtain the smalest possibb value of f.t for which, however, the 
natural condition At” = ~(a~$ r + 0 is satisfied (or) is the as~~to~c re~rese~tati~ of a,), 
This consideration is made use of when deriving the following fundamental inequa&ies 

where q(x) is the Heaviside unit function, and zWle are the non-zero roots of the equation 
P(l, s)=O. 

The first four inequalities of (3.4) are derived using the well-known relation between the originals of 
the transformations g(s) and g(J(s’ + 2)) [22j and fundamental theorems of the operational calcx~h~. For 
the fit relation of (3.4), for example. using the inequality t J,(x) ISI x t 12, we have 

The inversion theorem is used to derive the following five relations of (3.4). For the first of these we 



The dynamic problem of thermoelasticity for a half-space with distributed heat sources 351 

have, when 0 G t < z, using the displacement theorem, the originals L;l{e-z’s) and L.;l{e-L’S(s- 1)‘) from 

[23] and Eq. (3.546.2) from [24] 

q se-Oe 

\ 1 = ;,r-~e-ksI;l~e-zC]d~aL;l ,-rJ; = 
Rf-02 0 i 1 s-l 

=& I) 
e,T[exp(-x2 +2x&-zxlJ;)+exp(-x2 -2xJ;-trlJ;)]d.~~ 

-X2ch[x(2~-~/~)]dr=e'-L, e, =e-z2'(4r) (3.5) 

Suppose now that t 2 z. The transformation in the fifth relation of (3.4) is a regular function of s in a 
plane with cuts (-i-,+A], [ ih, i-), (--, -If]. Using the inversion theorem and Jordan’s lemma we can 

reduce the integral over the straight line Res = o to a set of integrals over the edges of the cuts. Taking 
into account the previously chosen branches of the radicals (1.4) and (1.6) into account, we obtain when 

ISZ 

2 7 ysin(zJm)cosyr & j sin(z&Z)e-Yr dy -_ 
Zh y2.1 = P Y+l 

(3.6) 

Using Taylor’s formula, Eqs (3.752.1) and (3.7425) from [24] and making a change of the variable of 

integration, we obtain 

2 
Q21(h,~,t)=Q,(0,~,r)+h2[11(h~)+12(h~)1= ~~~e-‘*‘dr+h 

0 

z-[~~~(t x~+~~)-~~(~*+~~)~]COS~~ +- I Ji 1 , Oc~,<I 
x0 x2 +A: +l 

The legitimacy of differentiating the integrals in (3.6) with respect to h2 is easily proved. Using formula 
74 (26) from [22] and the relations zl(dt)-24(t) < 0, (r 2 z) and shx G xe’, (x P 0) we will have, like (3.5) 

(3.7) 

Combining relations (3.5) and (3.6) and 

we obtain the fifth inequality of (3.4). 
The procedure for obtaining the ninth relation of (3.4) is similar to that described in [16] for a similar 

original. 
The last two inequalities of (3.4) are obtained by differentiation and subsequent estimation of the 

integral representation of J,(x) [24]. 

The method of obtaining estimates of 6, will be demonstrated using the example of a 
term from o,,. For the first term in on and the corresponding asymptotic representation in 
(2.15) we have 

(3.8) 
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Q;tkz,$ = R’x@, Y) E2?to’y) = Q;, + Q;, + Q;, = 
S2(02 - r2) - 2(S - r2) 

x(O*y)+ 
h2x(h. r) 
2 

S (cl?--y2) 

Using the displacement theorem, the limit (3.2), the third relation of (3.4) and the 
convolution theorem we obtain 

+z3q,)+Zt(t-z)q~ =h2S, 1 (3.9) 

An estimate of L;‘(Qg] is obtained in the same way as (3.1) and (3.9). Using (3.2) and the 
second inequality of (3.4) (for h = 0) we have 

Iq’(Q;2}l< $eyzt[t2 -(t-z)2q, +p(t-z)2r),l=3C?~2 (3.10) 

Using the theorem of the integration of an original, we obtain, in the same way as (3.10) 

I~‘{Q&)lS (A* /6)ey2’[t3 -(~-z)~TJ, +z(y+h2f)(f-zP~111=h263 +A464 (3.11) 

From (3.8)-(3.11) we obtain the limit 

IPK f53(81+62 +83)+P554 

Carrying out similar calculations for the remaining terms and the remaining stresses, we 
finally obtain 

l6,k p3(t2 I 2)ey2’-” 

16Ul~ ~&j&2t?7zt-~ +~I#3ey2’ 
{ 

2P,(2)+&(2)+$h(3)+ 

t+y(t-z)+2lc+ + 

(3.12) 
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PI (xl = rX - (r - ZYtl, I P*(x)=(r-zYrll -cc-EzYq* 

p3(x) = fXVo + ZYl* p4(X)=(t-zy77, ++z)=Tl* 
1 

wr=w9=-, 

2 
wz = 1, t& = 3$, +2&+,, e, = e-z2’41 

4 Let us consider an example. Suppose that in dimensionless variables f(r)=g3/(r2+82)3’2, y= 

2.5 x 10-9, h = 1.4 x lo+, v = 0.3, and 6 = 4 x 109. Then fH(h) = 62e-M, A,,(r) can be expressed in terms of 
elementary functions [24], p, = k!l6’-‘, k = 1, 2, . . . . For r=f,=lSxlO* and r=fi/2, Ocza2r, the 
relative errors of the asymptotic representations of the normal stresses (2.15), calculated by (3.12) do not 

exceed 5%. 
For cr,, from (2.15) Eq. (3.12) gives a satisfactory relative error (of up to 8%) in the neighbourhoods 

of the elastic wavefronts. 
Calculations show that for all 0 < t G t, the maximum values of the normal stresses are three orders of 

magnitude larger than the maximum values of o,,. consequently, in calculations connected with an 
investigation of the stress state at short heating times, we can use the solution of the corresponding one- 
dimensional problem multiplied by f( r). 

5 Part of the originals from (2.15) is available in tables [19, 221. The remaining originals are given 

below 

. 

,-Z& 

n&s-y*)(s-l)(&+h) 

1 

-h*(h* -l)(y* -h*) 
ehsihe$f$+h&)-&{$etmzetic(-&-&)- 

1 
--e 

h-l 
t+z effc 

1 -.Y2,-P f%Nc 
y3(y+h) 

1 
--ey2t+p erfc(*+ y&J} 

y3(y-h) 

” s&(s-y*)(;;+l)(&+h) 
L 

yL+h 

-y3(y2 -l)(y* -h*) 
e~2rrrfey&-(y2_,~(h Ile’erfc&+ 

1 

h*(y* -h*)(h-1) 
eh2’ erfchJ; 
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